Payments APl Document (JUL 2022)

Contents
21T =g D=1 7 11 OO PP 3
(Do) aToT gl 1Y/ o 1T O PSRRI 3
LYY 01T 0 A 0] o =Y ot R 3
PAYMENT STATUS .ttt e e st e e e e ee e s e s bttt e et eees s s s eababebeaaeaesansnnreraaeaeas 4
L 1Y 1= oY A NV o = T PPN 4
LYY a1 o Y UL o) Y7 o TIPS 4
PaYMENT TEOIMS e e e e s e e e s e e e e e eeeeeeeeeeeteetete e et eeeeesbebesbenne s nannnaan 4
o To [T A Y7 oY1 PP 5
Transaction FEE ProdUCE TYPE .uiiiiiieiiiiieieeiteee sttt st tee st e s s ssteee e s saeae e s sbbeeessssaeeaessaseneesnnns 5
Parent Payment [tem Correlation ... it e e s s be e s s 6
(0 [T T=I 2F=1 Y70 0 T=T o £ RSP T 7
P Y M ENTS CrEATE ... tiiiiiiieeiee ettt e et ee et e ee e e s e s sttt teeeeeeesaasatbbeaeeeeeessassanatreeaeaeeas 7
Example - Minimum Required Fields for reqUEST:cccevvieiiieeiie e 7
LYY a1 o A U1 T = o TSR 8
Payment [temM Add / UPate.....c.ocveeeeieeeiieeeeetee ettt ettt e e et e e e eteese s eateesseeteesreseseseresenessreeens 8
YT = 10 0 1T o PRSP 10
P Y MIENTS AT . e e a e e e e e e e e e e e e e e e e eaaeeeeeaeeeeeaeaeearaa 10
Dynamic Drop 1N PAQYMeENT Ul.......ueuiiiiiie ittt e teaee e e e e e e e e bae e e e ee e s s eeenansnnnnns 10
LU 1= LT T TP PP PUPTPRNN 10
KL= U] T PP PPPOPPPUPPUPIRt 10
CalIDACKS. ..ttt et et et ettt e be e et e e et e e et e ettt e baeeeareeebrs 11
(0] d o [T Y=Y i 1T Y=L RSP UPRRORUPPPRRNt 11
LT3 1 = PSPPI 12
GOFUNAIAISE AP ...ttt et e ea e e be e s bt e st e e s bt e e sabeesabeeesbbeesbeeesbbeesabeeens 12
[T T 0 Y o1 [T USSP PPP 14
Minimum Required Fields for reQUEST:ccoiiiiieeceeee et e e e e 14
Synchronous / AsynNChronous WOIKFIOW.......c..eeuiiieiieeeieeeie ettt eve e enee s 14
110 Y] =TSR 14
Minimum Required Fields for reqUeST:........ooi e i 14
SYNCAIONOUS PaYMENTS..ciiiiiiiit it ctie et sse e s s sbe e e s s b e e e s tbeaeesnsbaeeas 15
ASYNCAIONOUS PaYMENTS.cciiiiiiiiie ittt ittt ctiie s stite e et e e sbere e s ssraeesssstaeassbaaeeessanseaassanns 17

PaYMENT SEAtUS et e e arrre, 17

11001] LT PP PRRRTPN 17

The StatUus OB ECE...uuiiiiiiiiii i e e s aeee s s bt ee e s st beeesssssaeeeseanne 17
PaYMENES RELIIEVAI ..o eiieeeciiie ettt ettt e e et ee e e et ae e e s et e e e e eabeseeseansaaessasbaeseanseaeessassaeesennnes 18
ENtire PAyment OBJECE.....ciiii ittt e s e e s s e e s a e e ae e e sabaeens 18
1T oY o1 USRS 18
Individual Payment ItemM OBJECTuviii i ee e e rr e e s aa e s e e ab e e e sanaeeas 19
[T T a0 o1 LT OO PSRN 19
20T oo Y o =T @ o [Tt 4RSS 19
(G101 /=T o Tor PP PP UPOPPPPUPUPPPNE 19
21111 =T SRR 19

o 1Y 0 =T 0) RO PP PPPTPPRRRRRPIRY 20

L 1Y 0 T=T a1 4 L =] o DO RO PP PP P PP PPPUPPTPTRRNt 20

2L o T=Y (ol =1 o USSR 20

EVENT .. ettt e e e e et e e e eeae e et teteeeeeeea e et reaeeeeeen e e bartaaaaeaaeeas 21

Billing Details
All payments created require the FirstName, LastName, and Email to be completed on the
billing details. All other fields are optional but can be recommended in certain circumstances.

{

"BillingDetails™: {
"Organisation": "string",
"DonorType": "string",
"UserId": Integer,
"Title": "string",
"FirstName": "string",
"LastName": "string",
"Email": "string",
"PhoneNumber": "string",
"MobileNumber": "string",
"StreetAddress": "string",
"Suburb": "string",
"PostCode": "string",
"State": "string",
"Country": "string"

by

Donor Type

The donor type (DonorType) determines whether the transaction was made by an individual or
organisation. This can help when determining whether to display / receipt the organisation field.
When providing an organisation name it is recommended to define the DonorType to clearly
define if the payment was made on behalf of the organisation or that the user was only associated
with the organisation.

Options: null/blank, I — Individual, O - Organisation

Payment Object

The payment object includes all data related to the payment method and items within the payment.
The total charged against a payment method is calculated using the Payment items
(PaymentItems) included in the payment object.

{

"Payment": {

"PaymentType": "string",
"PaymentSubType": "string",
"PaymentCustomerReference": "string",
"PaymentNotes": "string",
"PaymentStatus": "string",
"ParentPaymentId": Integer,
"EnableCommunications": false,
"PaymentToken": "string",
"AdditionalData": "string",

"PaymentItems": [

]

Payment Status
A payment can have the following statuses

N — Not complete. This transaction is still processing

A — Active / Successful.

F — Failed

R — Refunded. This entire transaction was refunded prior to being remitted to any
beneficiaries.

Payment Type
Please note: Additional Payment Types may be added at any time. If using this field, please make
sure that you can handle unknown types. Current Payment Types Include:

CC — Credit Card

PP — PayPal

WPG - Workplace Giving
CASH — Cash / Other
CHQ — Cheque

Payment SubType
Please note: Additional Payment Sub Types may be added at any time. If using this field, please make
sure that you can handle unknown types. Current Payment Sub Types Include:

Offline — Offline / Other Source
PayPal - PayPal

MX — American Express

Visa - Visa

Master - Mastercard

G2G — Good2Give (restricted)

Payment Items
The payment items include all the details about the individual line items that are associated with a
payment.

{
"Payment": {
"PaymentItems": [

{
"ProductType": O,

"ProductDescription": "string",
"Quantity": O,
"UnitPrice": O,

"UnitSplit": [..]1,
"BeneficiaryAccountId": 0O,
"Classification": "string",
"PaymentItemNotes": "string",

"EventCampaignId": O,
"FundraisingPageId": O,
"FundraisingMessage": "string",
"Anonymous": false,

"DisplayOnPage": true,

"IncludeInTotal": true,
"ParentPaymentItemId": O,
"ParentPaymentItemCorrelation":
"PaymentItemCustomerReference": "string"

Product Types
Currently the following product types are available to choose from

'1' = Tax Deductible Donation

'2' = Non Tax Deductible Donation
'3' = Deposit Funds

'4'= Platform Gratuity

'5' = Registration

'6' = Ticket
'7' = Other
'8' = Shipping

'9' = Adjustment
'10' = Workplace Giving
'11"' = Transaction Fee

Transaction Fee Product Type

The user pays transaction fee product type is very specific to trigger the transaction fees to not be
applied across the other items within a payment. We search for the existence of product type 11
within a payment. If this exists, other payment items are not processed for the transaction fees.
Please note, transaction fees are calculated by the merchant on the total payment amount, so when
calculating the transaction fees a user is required to pay, please ensure you include this additional
amount in the cost calculation, otherwise there will be a slight discrepancy between the user
charged amount and the actual charged amount.

Subtotal =T
Transaction Fee = F
Transaction Rate =R
User Charge =C

C = ((R*T)+F)/(1-R)

E.g.
T=16.50
F=0.10

R=0.011

C =((0.011*16.50)+0.1)/(1-0.011)
=0.28

Please use the Your OWN Beneficiary for this product. The below is an example only.

{
"EventCampaignId": 10014,
"BeneficiaryAccountId": 104,
"ProductType": 11,
"ProductDescription": "User Pays Transaction Fee",
"UnitPrice": 0.28,
"Quantity": 1
}
Parent Payment Item Correlation
When linking a payment item with another payment item using the ParentPaymentItemId field
it is recommended to provide the context of that relationship so that the platform can display it

correctly. Option available are:

‘Refund’
‘ChargebackRefund’
- Used when adding a new item which refunds a previous item so that the original item is
negated and no longer displayed on the platform.

‘EmployerMatching’
‘GeneralMatching’
- Used when a matching donation is made against the original donation, this will display as a
secondary line under the original donation and boost the original donations total displayed.

‘Referral’
- Used to identify when a donation has been made after the sharing of the initial donation

‘Upsell’
- Used to identify when a user has increased their initial donation

‘Recurring’
- Used when a user has made donations on a recurring basis to increase their initial donation
over time

Offline Payments

The ability to add Offline Payments via the API is restricted and you must contact GoFundraise
support to enable the addition of Offline payments on a per event basis.

Payments Create
This endpoint requires Authorization via a Bearer Token

Url: https://api.gofundraise.com/vl/payments/payment
Method: POST

Offline payments are restricted to the Payment Types: WPG, CASH, CHQ
and Payment Sub Types: Offline

Offline Payments Support the full Billing Details, however, only support partial Payment / Payment
Item objects.

Billing Details require FirstName, LastName, and Email.

Payment Objects support only the following options:
PaymentType - Required
PaymentSubType - Required
PaymentCustomerReference
PaymentNotes
PaymentStatus - Required
ParentPaymentId
EnableCommunications

Payment Items support only the following options:
ProductType - Required
ProductDescription - Required
Quantity - Required
UnitPrice - Required
BeneficiaryAccountId -Required unless FundraisingPageId provided
Classification
PaymentItemNotes
EventCampaignId - Required unless FundraisingPageId provided
FundraisingPageld
FundraisingMessage
Anonymous
DisplayOnPage
IncludeInTotal
ParentPaymentItemId
ParentPaymentItemCorrelation
PaymentItemCustomerReference

Example - Minimum Required Fields for request:
{

"BillingDetails": {
"FirstName": "Test First",
"LastName": "Test Last",
"Email": "test@email.com",

}I

"Payment": {

"PaymentType": "CASH",

"PaymentSubType": "Offline",
"PaymentStatus": "A",
"PaymentItems": [
{
"EventCampaignId": 12345,
"BeneficiaryAccountId": 104,
"ProductType": 1,
"ProductDescription": "Donation",
"UnitPrice": 10,

"Quantity": 1

Payment Update
Offline Payments can be altered after the initial creation as they are marked as non financial
payments. Live payments cannot be altered after creation.

This endpoint requires Authorization via a Bearer Token

Url: https://api.gofundraise.com/v1/payments/payment/{paymentid}
Method: PUT

Any Billing or Payment fields that are passed through on this request will be updated. You cannot
update payment items from this endpoint.

Example usage is to convert a pledge donations from status ‘N’ to status ‘A’ when funds are received
for the pledge.

Payment Item Add / Update

Offline payments can have payment items added or altered after the initial creation as they are
marked as non-financial payments. Live payments cannot have additional payment items added or
updated.

This endpoint requires Authorization via a Bearer Token

Url: https://api.gofundraise.com/vl/payments/payment/{paymentid}
Method: POST

This endpoint can receive an array of payment items as per normal offline payment abilities.
Example

{
"PaymentItems": [
{

"EventCampaignId": 12345,
"BeneficiaryAccountId": 104,
"ProductType": 1,
"ProductDescription": "Donation",
"UnitPrice": 10,
"Quantity": 1

]
}

This endpoint requires Authorization via a Bearer Token

Url: https://api.gofundraise.com/v1/payments/paymentitem/{paymentitemid}
Method: PUT

This endpoint can update a specific payment item as for normal offline payment abilities.
Example:

{
"UnitPrice": 15,

"Quantity": 2

Live Payments
The ability to add Live Payments via the API is restricted and you must contact GoFundraise support
to enable the addition of Offline payments on a per event basis.

Payments Create

Dynamic Drop In Payment Ul

The Dynamic drop in Ul has been extended to allow for both Credit Card and PayPal options to be
completed through the front end. All updates from our side will be automatically applied to your
platform.

Auto loaded from gateway demo

Fees:

Credit €ard PavPa [{"merchant";"Master","transactionRate":0.011,"transactionFee":0.2},
{"merchant”:"MX",“transactionRate™:0.0198, "transactionFee":0.2},
{"merchant™"Visa","transactionRate™0.011, "transactionFee":0.2},
(:‘- | am the Card Holder {"merchant":"PayPal","transactionRate":0.021, "transactionFee":0.2}]
Credit card number @
Expiry Security Number

MMAYY cwW

wa B 2

An Example of the New Dynamic Drop in Ul that should be utilized during this project can be found
online here: https://cdn.gofundraise.com.au/all/js/test/payment-module/AutoLoadDemo.html

Usage

There are 2 Main areas that need to be addressed when implementing the new Dynamic Drop In Ul:
Setup and Callback actions. The callback actions should be used by your front end to capture /
process data returned by the Dynamic Drop In Ul.

Setup
The Dynamic Drop in Ul must be provided with the following data to allow a correct setup:

<script src="https://unpkg.com/vue" charset="utf-8"></script>

<script
src="https://cdn.au.awstest.gfrnetworks.com/all/js/test/payment-
module/gf-payments.min.js" charset="utf-8"></script>

<link rel="stylesheet"
href="https://cdn.au.awstest.gfrnetworks.com/all/js/test/payment-
module/gf-payments.min.css">

<gf-payments
process-button-id="element"
on-tokenize-success="tokenSuccess"
on-tokenize-error="tokenError"
on-token-reset="tokenReset"
on-fees-received="feesReceived"
:use-system-defined-gateway="true">

</gf-payments>

Callbacks
on-tokenize-success

Use this callback to collect the token data for the payment method for the APl and other
display’s required on the page, including validation / enabling the submission button.
Example Callback Response:

{

"paymentToken":
"tokencc _bj wh2gbd vw96gv b7xbz6 wdbbk6 py5",
"paymentType": "Visa",
"paymentDisplay": "1111",
"paymentExpiry": "11/2021",

"additionalData": {

}

"cardholderName": "Test Test"

on-tokenize-error

Use this callback to trigger any negative validation where required.

on-token-reset

Use this callback to set negative validation / disable the submission button if the payment
token becomes stale OR is modified.

on-fees-received

Use this callback to display the fees for all available payment methods that have been
retrieved for the Beneficiary / Event combination sent through.

Example Callback Response:

[

Other Settings

event-Id

"merchant": "Master",
"transactionRate": 0.011,
"transactionFee": 0.2
"merchant": "MX",
"transactionRate": 0.0198,
"transactionFee": 0.2
"merchant": "Visa",
"transactionRate": 0.011,
"transactionFee": 0.2
"merchant": "PayPal",
"transactionRate": 0.021,
"transactionFee": 0.2

- beneficiary-id

- process-button-id
This can be any element on your Ul which will always contain the latest data from the
Dynamic Drop In UL. This is useful to use in case you have mishandled or missed a callback.
Example data on element:
<div id="element" data-payment-
token="tokencc bj 76bcdp mg3tr7 pvm6jj k8xvwh hp7" data-
payment-type="Visa" data-payment-display="1111" data-payment-
expiry="12/2034" data-additional-data=""></div>

- :use-system-defined-gateway
This should be set to true when using the Dynamic Drop In Ul
:use-system-defined-gateway="true"

Testing
Test Credit Cards

Visa: 4111 111111111111 12/34123
Mastercard: 5555 5555 5555 4444 12/34 123
Amex: 3782 8224 631 0005 12/34 1234
Paypal: aupaypal@test.com gofundraise

GoFundraise API
This endpoint requires Authorization via a Bearer Token

Url: https://api.gofundraise.com/v1/payments/payment
Method: POST

Offline payments are restricted to the Payment Types: WPG, CASH. CHQ and Payment Sub Types:
Offline

Offline Payments Support the full Billing Details, however, only support partial Payment objects.
Payment Items support all options.

Billing Details require FirstName, LastName, and Email.

Payment Objects Support only the following options:

PaymentNotes
ParentPaymentId
EnableCommunications
PaymentToken - Required
AdditionalData - Required

The PaymentToken and AdditionalData will be returned from the Dynamic Drop In Ul and
both contain important data for the completion of the payment.

For testing you may use the following

Successful Payment

"PaymentToken": "fake-valid-nonce",
"AdditionalData": "{\"paymentType\":\"CC\",\"clientIpAddress\":\"127.0.0.1\", \"paym
entSubType\":\"Visa\", \"referrerUrl\":\"https://www.testing.com"}",

Unsuccessful Payment

"PaymentToken": "fake-processor-declined-visa-nonce",
"AdditionalData": "{\"paymentType\":\"CC\",\"clientIpAddress\":\"127.0.0.1\",\"paym
entSubType\":\"Visa\",\"referrerUrl\":\"https://www.testing.com"}",

Example
POST /v1/payments/payment

(Authorization token is required to use this endpoint.)

Minimum Required Fields for request:

{
"BillingDetails": {

"FirstName": "Test First",
"LastName": "Test Last",
"Email": "test@email.com",

}I
"Payment": {
"PaymentToken": "fake-valid-nonce",
"AdditionalData": "{\"paymentType\":\"CC\",\"clientIpAddress\":\"127.0.0.1\
", \"paymentSubType\":\"Visa\", \"referrerUrl\":\"https://developer.gfrnetworks.com/c
anary/paymentsgateway-ui/index.html#!/UseCasel\"}",
"PaymentItems": [
{
"EventCampaignId": 10014,
"BeneficiaryAccountId": 104,
"ProductType": 1,
"ProductDescription": "Other Item",
"UnitPrice": 10,
"Quantity": 1

"EventCampaignId": 10014,

"BeneficiaryAccountId": 104,

"ProductType": 11,

"ProductDescription": "User Pays Transaction Fee",
"UnitPrice": 0.28,

"Quantity": 1

Synchronous / Asynchronous Workflow

It is now possible to perform a payment request either synchronously or asynchronously by using a
Boolean flag “WaitForCompletion” inside the payment object of your request. By default this is set
to true to maintain backwards compatibility with existing synchronous usage.

"WaitForCompletion": true,

Example
POST /v1/payments/payment

(Authorization token is required to use this endpoint.)

Minimum Required Fields for request:
{
"BillingDetails": {
"FirstName": "Test First",

"LastName": "Test Last",
"Email": "test@email.com",
}y
"Payment": {
"WaitForCompletion": true,
"PaymentToken": "fake-valid-nonce",
"AdditionalData": "{\"paymentType\":\"CC\",\"clientIpAddress\":\"127.0.0.1\
", \"paymentSubType\":\"Visa\",\"referrerUrl\":\"https://developer.gfrnetworks.com/c
anary/paymentsgateway-ui/index.html#!/UseCasel\"}",
"PaymentItems": [
{
"EventCampaignId": 10014,
"BeneficiaryAccountId": 104,
"ProductType": 1,
"ProductDescription": "User Pays Transaction Fee",
"UnitPrice": 10,
"Quantity": 1

Synchronous Payments
A synchronous payment, where "WaitForCompletion” is null or true, attempts to perform the entire
payment workflow prior to returning a result.

On completion of this process a synchronous payment will return a 201 (Created) result including
currency, payment, billing details, and payment items.

{
"Currency": {
"Symbol": "$",
"Name": "Australian dollar",

"Code": "AUD",
"IsoLanguageCode": "en-AU"

s

"BillingDetails": {
"FirstName": "test",
"LastName": "user",
"Email": "test@user.com"

s

"Payment": {
"PaymentId": 1234567,
"DateCreated": "2021-08-23T16:03:07.6099856",
"PaymentStatus": "A",
"PaymentStatusDescription": "SUCCESS",
"TotalAmount": 1.00,
"PaymentCustomerReference": "6axbmde8",
"PaymentType": "CC",
"PaymentSubType": "VISA",
"PaymentItems": [

{

"PaymentItemId": "12345678",

"PaymentItemTotalAmount": 1.00,

"Quantity": 1,

"UnitPrice": 1.00,

"PaymentItemDateCreated": "2021-08-23T06:03:08.1858078",
"ProductType": 1,

"ProductDescription"”: "Tax Deductible Donation",
"Anonymous": false,

"DisplayOnPage": true,

"IncludeInTotal": true,

It is possible for the generation of payment items to fail whilst the transaction itself completes.
Please ensure that your implementation can gracefully handle an empty payment item array. If this
situation occurs it will be attempted to be rectified during reconciliation and the items generated,
or, where rectification is not possible, the transaction will be refunded.

Please note: A maximum timeout period of 29s applies to this endpoint. If the transaction exceeds
this time for processing, it will be automatically voided/refunded.

Asynchronous Payments
An asynchronous payment, where "WaitForCompletion” is false, returns a reference GUID which can
then be used to retrieve the status of a payment at a later time.

On successful creation of a reference GUID, an asynchronous request will return a 202 (Accepted)
result.

{
" ReferencelId": "b2d54513-414a-4ccb-a7a4-5cd8cbfe0a8c"”

Payment Status
The payment status endpoint is used to give an “at-a-glance” overview of a payment request and
can be used to poll for a response to an asynchronous payment previously made.

Example
GET /v1/payments/paymentstatus/{{Referenceld}}

(Authorization token is required to use this endpoint.)

{
"PaymentId": null,

"Referenceld": "f8e56f3c-bf7a-4729-8804-47cb2137d361",
"Status": {

"Status": "Received",

"StatusCode": null,

"StatusMessage": null

The Status Object
There are 3 possible statuses for a payment status

- Received, the initial status from an asynchronous payment request. A Paymentld may or

may not be available at this stage
"Status": "Received",

- Success, this indicates that the payment was successfully authorized and submitted for
settlement on the payment provider. Further details about the payment can be found by
retrieving the payment details using the Paymentld.

"Status": "Success",

- Failure, this indicated that the payment failed to be authorized on the payment provider.
Further details about the payment can be found by retrieving the payment details using the
Paymentld.

"Status": "Failure",

The "StatusCode" and "StatusMessage" should be used for contextual information only as there is
not currently a well known list of responses that can be used for further processing.

Payments Retrieval

It is possible to retrieve payment details using the relevant ids. This may be useful if requiring
additional information when using the asynchronous payment flow and the payment status was
“Success”

Entire Payment Object
To retrieve the entire payment object including billing, currency, and payment items the payment id
is required.

Please note: The existence of a payment object does not indicate a successfully transaction, please
use the PaymentStatus field for this detail.

Example
GET /v1/payments/payment/{{Paymentid}}

(Authorization token is required to use this endpoint.)

{

"Currency": {
"Symbol": "$",
"Name": "Australian dollar",
"Code": "AUD",
"IsoLanguageCode": "en-AU"

¥

"BillingDetails": {
"FirstName": "test",
"LastName": "user",
"Email": "test@user.com"

¥

"Payment": {

"PaymentId": 1234567,
"DateCreated": "2021-08-23T16:03:07.6099856",
"PaymentStatus": "A",
"PaymentStatusDescription”: "SUCCESS",
"TotalAmount": 1.00,
"PaymentCustomerReference": "6axbmde8",
"PaymentType": "CC",
"PaymentSubType": "VISA",
"PaymentItems": [
{
"PaymentItemId": "12345678",
"PaymentItemTotalAmount": 1.00,
"Quantity": 1,
"UnitPrice": 1.00,
"PaymentItemDateCreated": "2021-08-23T06:03:08.1858078",
"ProductType": 1,
"ProductDescription”: "Tax Deductible Donation",
"Anonymous": false,
"DisplayOnPage": true,
"IncludeInTotal": true,

}

Individual Payment Item Object

It is possible to retrieve the details about an individual payment item including event, beneficiary,
and fundraising page information. To do so a payment item id is required

Please note: The existence of a payment item object does not indicate a successfully transaction,
please resolve this detail using the Paymentld field to retrieve the entire payment object for this
detail.

Example
GET /v1/payments/paymentitem/{{Paymentitemid}}

{
"PaymentId": 1234567,

"PaymentItemId": "12345678",

"PaymentItemTotalAmount": 1.00,

"Quantity": 1,

"UnitPrice": 1.00,

"PaymentItemDateCreated": "2021-08-23T06:03:08.1858078",
"ProductType": 1,

"ProductDescription": "Tax Deductible Donation",
"Anonymous": false,

"DisplayOnPage": true,

"IncludeInTotal": true,

Response Objects

Currency
The currency object displays details about the currency the transaction was made in

"Currency”: {
"Symbol": "$",
"Name": "Australian dollar",
"Code": "AUD",
"IsoLanguageCode": "en-AU"

¥

Billing
The billing details include the billing information for the transaction

"BillingDetails": {

"Organisation™: "",
"DonorType": "",
"UserId": null,

"Title": "™,

"FirstName": "testl",
"LastName": "userl",
"Email": "test@user.com",
"PhoneNumber": ""

"MobileNumber": "",

"StreetAddress": "",
"Suburb": "",
"PostCode": "",
"State": "",

"Country":

¥

Payment
"Payment": {
"PaymentId": 1234567,
"DateCreated": "2021-08-23T716:03:07.6099856",
"PaymentStatus": "A",
"PaymentStatusDescription": "SUCCESS",
"TotalAmount": 1.00,
"PaymentCustomerReference": "",
"ParentPaymentId": null,
"PaymentType": "",
"PaymentSubType": "",
"PaymentNotes": ""
"PaymentItems": [

]

Paymentitem

{
"PaymentItemId": "123456789",
"PaymentItemTotalAmount": 1.00,
"Quantity": 1,
"UnitPrice": 1.00,
"ParentPaymentItemId": null,

nn
E

"PaymentItemDateCreated": "2021-08-23T06:03:08.1858078",
"ProductType": 1,

"PaymentItemCustomerReference":

"ProductDescription”: "",
"Classification": "",

"FundraisingMessage": B
"PaymentItemNotes": ""
"Anonymous": false,
"DisplayOnPage": true,
"IncludeInTotal": true,
"Beneficiary": {},
"Event": {},

"Page": {}

Beneficiary
"BeneficiaryAccountId": "1e4",

"BeneficiaryImagePath": "http://www.au.awstest.gfrnetworks.com//Upload/beneficiar
y/104/logo.png",

"BeneficiaryName": "X Demo 01",
"BeneficiaryUrl": "http://www.au.awstest.gfrnetworks.com/beneficiary/Demo",

Event

"EventCampaignId": "1e014",

"EventImagePath": "https://cdn.awstest.gfrnetworks.com/Upload/Events/10014/Eventl
32348656632527289.jpg",

"EventName": "Making A difference",

"EventUrl": "makingadifference.au.awstest.gfrnetworks.com"

Page
"PageId": 4567894,
"PageImagePath": "string",
"PageTitle": "string",
"PageCreatorName": "string",
"PageUrl": "string",
"PageDonationUrl": "string"

